Using VOMS for Concussion Management

By: Jaclyn Morrissette, PhD, ATC

Conflict of Interest Statement

• I have no conflict of interest to disclose.

Objectives

- To identify the effects of how sustaining a concussion can have on vestibular-ocular function of a patient.
- To understand the evaluation process of vestibular-ocular function both pre- and post-concussion to properly manage and make return to play decisions.
- To utilize VOMS exercises as part of the clinician's plan of care for a patient who has sustained a concussion and has vestibular-occular dysfunction.
- To evaluate a patient pre- and post-VOMS exercises for exacerbation of their signs and/or symptoms and determine the proper progression for the exercises.
- To implement return-to-play guidelines following a concussion utilizing different rehabilitation techniques, including VOMS, that address all deficits a patient may have post-concussion.

CONCUSSIONS

What is a Concussion?

- NATA Position Statement: Management of Sport Concussion - A concussion, which is a form of mild traumatic brain injury (mTBI), has been defined as a trauma-induced alteration of mental status that may or may not involve the loss of consciousness.¹
- McCrory et al. defines a concussion diagnosis as an injury caused by a direct blow to the head, face, neck or elsewhere on the body with impulsive force transmitted to the head, resulting in impaired neurological function and acute clinical symptoms.²

Concussion Frequency

- The World Health Organization's (WHO) Collaborating Centre Task Force estimate that the annual incidence of concussion is 100 to 300/100,000 emergency department visits³
 - Many go unreported closer to 600/100,000³
- It is estimated that 1.6-3.8 million concussions occur annually as a result of sport participation⁴
 - Many by high school aged students^{5,6}
 - Account for approximately 5% of all collegiate sport-related injuries⁷

Mechanisms of Concussion

- Direct blow to the head or body
 - Head snap forward, backward, or rotate to the side⁸
- Common in collision or contact sports⁹
 - Football, soccer, lacrosse, boxing, ice hockey wrestling¹⁰
- Not limited to only contact sports
 - Baseball, softball, gymnastics, field hockey, volleyball, cheerleading, track
- Non-sport related
 - Motor vehicle accidents & direct contact with an inanimate object¹¹

Signs & Symptoms¹²

- Dizziness
- Headaches
- Blurred vision
- Abnormal eye tracking
- Diplopia
- Photophobia
- Tinnitus

- Delayed verbal & motor responses
- Slurred speech
- Concentration problems
- Memory deficit
- Disrupted coordination
- Behavioral changes
- Loss of consciousness^{9,13}

Evaluation

- Determining level of consciousness
- Assessing ABC's and cervical spine
- HOPS
 - Neurological Exam
 - Cranial Nerves
 - Dermatome, myotome, and reflexes
 - Coordination (Cerebellar) Tests
 - Romberg Test
 - BESS Test
 - Finger-to-nose
 - Tandem gait
 - Cognitive (Cerebral) Tests

Single Leg Non-Dominant Stance (eyes open/closed)

Romberg Test

Tandem Stance Non-Dominant in Back (eyes open/closed)

Single Leg Non-Dominant Stance (eyes open/closed) on Foam Tandem Stance Non-Dominant in Back (eyes open/closed) on Foam

Cerebellar (Balance) Tests

• Balance Error Scoring System (BESS)⁹

Types of Errors Hands lifted off iliac crest Opening eyes Step, stumble, or fall Moving hip into > 30° ABD Lifting forefoot or heel Remaining out of testing position for > 5 sec The BESS is calculated by adding one error point for each error during the six

20-second tests.

Score Card (# errors)	FIRM Surface	FOAM Surface
Double-Leg Stance (narrow stance- feet together)		
Single-Leg Stance (nondominant foot)		
Tandem Stance (nondominant foot in back)		
Total Scores		

BESS Test

Coordination (Cerebellar) Tests

- Tandem Gait¹⁴⁻¹⁶
 - Heel-to-toe walking

Cognitive (Cerebral) Tests

- Baseline measurements vs. post-concussion^{10,17}
 - Memory recall
 - Retrograde amnesia who won last week, where they live, food ate for breakfast
 - Anterograde amnesia game score, last play, 3 word recall
 - Serial 7
 - Backward spelling
 - Months in reverse order

Sport Concussion Assessment Tool (SCAT)

- Development & Implementation^{18, 19}
 - Symptom scale
 - Maddocks' questions/score
 - On-field markers of concussion
 - Amnesia, loss of consciousness
 - Return to play

- Revisions
 - SCAT2: 2004 Glasgow Coma Scale (GCS), alternate word lists, BESS (hard surface only)
 - SCAT3: 2013 additional physical/objective signs, option for foam stances or timed tandem gait
 - SCAT5: 2017 more alternative digits, neurological screen, modified tandem gait (no timing)
- Children's SCAT (< 13 yo)²⁰⁻²²
 - Versions 3 and 5

Neurocognitive Tests

- Pencil & Paper^{23, 24}
 - Stroop Color Word Test
 - Symbol Digit Modalities Test
 - Controlled Oral Word Association Test
- Computerized^{23, 25}
 - ImPACT
 - Sway
 - CNS Vital Signs
 - ANAM

EFFECTS OF CONCUSSION ON ACTIVITY

Maintaining Balance & Stability

- Joint posture
 - Relies on nervous system
 - Spinal cord
 - Brain
 - Voluntary control
 - Muscle selection during movement
 - Conscious
 - Unconscious

Balance & Motor Symptoms Associated with Concussion²⁶⁻²⁹

- Short-term
 - Balance & static postural control
 - Gait unsteadiness & dynamic postural control
- Long-term
 - Altered postural control
 - Gait impairment
 - Increased risk of lower extremity injury
- Clinical symptoms vs. Balance & Gait alterations

Sensory Influence

- Sensory signals
 - Initiated by brain, peripheral nervous system (PNS), or both
- Visual (Eyes)
 - Vision
 - Spatial orientation & positions relative to environment
- Vestibular (Ear)
 - Head movement & orientation relative to gravity

- Somatosensory (Receptors)
 - Location of one body part to another
 - Awareness in space (proprioception)
 - Loads
 - Joint position receptors
 - Ruffini endings, Golgi receptors, Pacinian corpuscles
 - Muscle length & tension receptors
 - Muscle spindles & Golgi tendon organ

Brain Functions

Age Considerations³⁰

- Ages 4 to 6
 - Integration of all systems can overload brain
 - Balance & coordination may suffer
- Ages 7 to 10+
 - More reliant on somatosensory & vestibular systems
 - Fewer postural adjustments
 - Concentrate on other tasks (ball movement, monitoring opponents)
 - Process information related to developing strategies and tactics

RECOMMENDATIONS FOR RETURN TO PLAY POST-CONCUSSION

Acute Rest

- Most widely used intervention³¹⁻³⁴
 - Cognitive and physical exertion can \clubsuit symptoms^{19,35}
 - Mitigates post-concussion symptoms
- Minimizing energy demands on the body³⁶⁻³⁸
- Decreased risk sustaining another concussion³⁹
 - Note: restricting sport participation that would put patient at risk, rather than usual activities⁴⁰⁻⁴²

Prolonged Rest

- Prolonged rest
 - Not beneficial⁴³
 - Physical deconditioning⁴⁴, metabolic disturbances⁴⁵, fatigue, depression⁴⁶
- Recommendations
 - Early post-injury (24-48 hours)
 - Decrease effects of symptoms
 - After 24-48 hours, gradual increase in activity
 - Below cognitive & physical symptoms exacerbation threshold⁵⁸

Rehabilitation

• Stepwise progression

– Light aerobic activity⁷ \rightarrow sport/work specific activities⁴⁷

- Focusing on systems affected⁴⁸
 - Vestibular
 - Cognitive
 - Sensorimotor

Vestibular Rehabilitation

- Found to improve dizziness and gait & balance dysfunction^{49,50}
- Vestibular/Ocular Motor Screening (VOMS)⁵¹
 - Smooth pursuit
 - Horizontal & vertical saccades
 - Convergence
 - Horizontal vestibular ocular reflex (VOR)
 - Visual motion sensitivity (VMS)

Smooth Pursuit

Horizontal Saccades

Convergence

OFNPVDTCHE
BAKOEZLRX
ETHWFMBKAP
XFRTOSMVC
RADVSXPETO
MPOEANCBKF Y
CRGDBKEPMA **
FXPSMARDLG MP
ТМИАХЗОБРВ

VOR Testing

VMS Testing

Summary

- Clinical Symptoms
- Cognitive & Motor Deficits
- Using VOMS as part of RTP protocol
- Subjective RTP guidelines
 No one-size-fits-all approach

QUESTIONS?

References

1. Broglio, S.P., et al., *National Athletic Trainers' Association position statement: management of sport concussion*. J Athl Train, 2014. 49(2): p. 245-65.

2. McCrory, P., et al., Consensus statement on concussion in sport - The 3rd international conference on concussion in sport held in Zurich, November 2008. PM R, 2009. 1(5): p. 406-20.

3. Berry, D., Athletic mouth guards and their role in injury prevention. Athletic Therapy Today, 2001. 6(5): p. 52.

4. Prentice, W.E., *Principles of Athletic Training: A Guide to Evidence-Based Clinical Practice, 16th ed.* 2017, New York, NY: McGraw-Hill Education.

5. Jordan, B., Head injuries in sport, in Sports neurology, B. Jordan, Editor. 1998, Lippencott, Williams and Wilkins: Philadelphia, PA.

6. Laker, S.R., Epidemiology of concussion and mild traumatic brain injury. PM R, 2011. 3(10 Suppl 2): p. S354-8.

7. McCrory, P., et al., *Consensus statement on concussion in sport - the 5th international conference on concussion in sport held in Berlin, October 2016.* Br J Sports Med, 2018. 51: p. 838-847.

8. Guskiewicz, K.M., et al., *Epidemiology of concussion in collegiate and high school football players*. Am J Sports Med, 2000. 28(5): p. 643-50.

9. Reimann, B., Relationship between clinical and forceplate measures of postural stability. J Sport Rehabil, 1999. 8(2): p. 71-82.

10. Giorgetti, M.M., B.A. Harris, and A. Jette, *Reliability of clinical balance outcome measures in the elderly.* Physiother Res Int, 1998. 3(4): p. 274-83.

11. Kammerlind, A.S., et al., *Reliability of clincal balance tests and subjective ratings in dizziness and disequilibrium*. Adv Physiother, 2005. 7: p. 96-107.

12. Schneiders, A.G., et al., *Normative values for three clinical measures of motor performance used in the neurological assessment of sports concussion.* J Sci Med Sport, 2010. 13(2): p. 196-201.

13. Yengo-Kahn, A.M., et al., The Sport Concussion Assessment Tool: a systematic review. Neurosurg Focus, 2016. 40(4): p. E6.

14. Giorgetti, M.M., B.A. Harris, and A. Jette, *Reliability of clinical balance outcome measures in the elderly.* Physiother Res Int, 1998. **3**(4): p. 274-83.

15. Kammerlind, A.S., et al., *Reliability of clinical balance tests and subjective ratings in dizziness and disequilibrium.* Adv Physiother, 2005. **7**: p. 96-107.

16. Schneiders, A.G., et al., *Normative values for three clinical measures of motor performance used in the neurological assessment of sports concussion.* J Sci Med Sport, 2010. **13**(2): p. 196-201.

17. Covassin, T., C.B. Swanik, and M.L. Sachs, *Sex Differences and the Incidence of Concussions Among Collegiate Athletes*. J Athl Train, 2003. **38**(3): p. 238-244.

18. Yengo-Kahn, A.M., et al., The Sport Concussion Assessment Tool: a systematic review. Neurosurg Focus, 2016. 40(4): p. E6.

19. McCrory, P., et al., *Summary and agreement statement of the 2nd International Conference on Concussion in Sport, Prague 2004.* Br J Sports Med, 2005. **39**(4): p. 196-204.

20. Field, M., et al., *Does age play a role in recovery from sports-related concussion? A comparison of high school and collegiate athletes.* J Pediatr, 2003. **142**(5): p. 546-53.

21. Purcell, L., *What are the most appropriate return-to-play guidelines for concussed child athletes?* Br J Sports Med, 2009. **43 Suppl 1**: p. i51-5.

22. Anderson, V. and C. Moore, *Age at injury as a predictor of outcome following pediatric head injury: a longitudinal perspective.* Child Neuropsychol, 1995. **1**(3): p. 187-202.

23. Erlanger, D., et al., *Monitoring Resolution of Postconcussion Symptoms in Athletes: Preliminary Results of a Web-Based Neuropsychological Test Protocol.* J Athl Train, 2001. **36**(3): p. 280-287.

24. Randolph, C., *Implementation of Neuropsychological Testing Models for the High School, Collegiate, and Professional Sport Settings.* J Athl Train, 2001. **36**(3): p. 288-296.

25. Ferrara, M.S., et al., A Survey of Practice Patterns in Concussion Assessment and Management. J Athl Train, 2001. **36**(2): p. 145-149.

26. Howell, D., L. Osternig, and L.S. Chou, *Monitoring recovery of gait balance control following concussion using an accelerometer.* J Biomech, 2015. 48(12): p. 3364-8.

27. Howell, D.R., L.R. Osternig, and L.S. Chou, *Dual-task effect on gait balance control in adolescents with concussion*. Arch Phys Med Rehabil, 2013. 94(8): p. 1513-20.

28. Oldham, J.R., et al., *Altered dynamic postural control during gait termination following concussion*. Gait Posture, 2016. 49: p. 437-442.

29. Parker, T.M., et al., *Gait stability following concussion*. Med Sci Sports Exerc, 2006. 38(6): p. 1032-40.

30. Shumway-Cook, A. and M. Woolacott, *Development of posture and balance control*, in *Motor Control: Theory and Practical Applications*, A. Shumway-Cook and M. Woolacott, Editors. 1995, Williams & Wilkins: Baltimore, MD.

31. Lebrun, C.M., et al., Sport concussion knowledge base, clinical practises and needs for continuing medical education: a survey of family physicians and cross-border comparison. Br J Sports Med, 2013. **47**(1): p. 54-9.

32. Arbogast, K.B., et al., *Cognitive rest and school-based recommendations following pediatric concussion: the need for primary care support tools.* Clin Pediatr (Phila), 2013. **52**(5): p. 397-402.

33. Stoller, J., et al., *Do family physicians, emergency department physicians, and pediatricians give consistent sport-related concussion management advice?* Can Fam Physician, 2014. **60**(6): p. 548, 550-2.

34. Zemek, R., et al., *Canadian pediatric emergency physician knowledge of concussion diagnosis and initial management.* CJEM, 2015. **17**(2): p. 115-22.

35. Majerske, C.W., et al., *Concussion in sports: postconcussive activity levels, symptoms, and neurocognitive performance.* J Athl Train, 2008. **43**(3): p. 265-74.

36. Giza, C.C. and D.A. Hovda, The Neurometabolic Cascade of Concussion. J Athl Train, 2001. 36(3): p. 228-235.

37. Barkhoudarian, G., D.A. Hovda, and C.C. Giza, *The Molecular Pathophysiology of Concussive Brain Injury - an Update.* Phys Med Rehabil Clin N Am, 2016. **27**(2): p. 373-93.

38. Wells, E.M., H.P. Goodkin, and G.S. Griesbach, *Challenges in Determining the Role of Rest and Exercise in the Management of Mild Traumatic Brain Injury*. J Child Neurol, 2016. **31**(1): p. 86-92.

39. McCrea, M., et al., *Effects of a symptom-free waiting period on clinical outcome and risk of reinjury after sport-related concussion*. Neurosurgery, 2009. **65**(5): p. 876-82; discussion 882-3.

40. Vagnozzi, R., et al., *Temporal window of metabolic brain vulnerability to concussions: mitochondrial-related impairment--part I.* Neurosurgery, 2007. **61**(2): p. 379-88; discussion 388-9.

41. Longhi, L., et al., *Temporal window of vulnerability to repetitive experimental concussive brain injury*. Neurosurgery, 2005. **56**(2): p. 364-74; discussion 364-74.

42. Laurer, H.L., et al., *Mild head injury increasing the brain's vulnerability to a second concussive impact.* J Neurosurg, 2001. **95**(5): p. 859-70.

43. Willer, B. and J.J. Leddy, *Management of concussion and post-concussion syndrome*. Curr Treat Options Neurol, 2006. **8**(5): p. 415-26.

44. Hamilton, M.T., D.G. Hamilton, and T.W. Zderic, *Exercise physiology versus inactivity physiology: an essential concept for understanding lipoprotein lipase regulation.* Exerc Sport Sci Rev, 2004. **32**(4): p. 161-6.

45. Berlin, A.A., W.J. Kop, and P.A. Deuster, *Depressive mood symptoms and fatigue after exercise withdrawal: the potential role of decreased fitness.* Psychosom Med, 2006. **68**(2): p. 224-30.

46. Schneider, K.J., et al., *Rest and treatment/rehabilitation following sport-related concussion: a systematic review.* Br J Sports Med, 2017. **51**: p. 930-934.

47. Leddy, J.J., et al., *Reliability of a graded exercise test for assessing recovery from concussion*. Clin J Sport Med, 2011. 21(2): p. 89-94.
48. Gagnon, I., et al., *Active rehabilitation for children who are slow to recover following sport-related concussion*. Brain Inj, 2009.
23(12): p. 956-64.

49. Alsalaheen, B.A., et al., *Vestibular rehabilitation for dizziness and balance disorders after concussion*. J Neurol Phys Ther, 2010. **34**(2): p. 87-93.

50. Prangley, A., M. Aggerholm, and M. Cinelli, *Improvements in balance control in individuals with PCS detected following vestibular training: A case study.* Gait Posture, 2017. **58**: p. 229-231.

51. Mucha, A., et al., A Brief Vestibular/Ocular Motor Screening (VOMS) assessment to evaluate concussions: preliminary findings. Am J Sports Med, 2014. **42**(10): p. 2479-86.

THANK YOU!

